

The English-Corpora.org corpus architecture

The fastest, most versatile corpus architecture for large corpora

Mark Davies

The architecture for the corpora from English-

Corpora.org is extremely robust. It can handle corpora

with (tens of) billions of words of data, and is much

faster than corpora from other sites like Sketch Engine

and corpora that use CQPWeb, as well as providing a

very wide range of query types. The following overview

discusses four aspects of the corpus architecture that

make it so powerful.

1. Numbers, not words

(Note that this is something that is shared by most

other corpus architectures, or at least it should be).

Although texts composed of words and sentences are

imported into the corpora, at a certain stage in the

process these words are converted to numbers. For

example, all instances of beautiful might be replaced by

the number 1069. The reason for doing this is that it is

much faster to search for numbers than to search for

strings of characters. To match the word beautiful, we

would have to find all cases of a [b], and then when we

find that, we would check to see if the next letter is an

[e] and then [a], [u], and so on (that’s nine different

comparisons for a word like beautiful). But a number

like 1069 either matches or doesn’t match – all in “one

shot”. (A number like 1069 also only takes up one byte

in terms of storage, whereas with a word it is one byte

for each letter in the word.)

So in this case we have an entry in a [lexicon] table (as

in Table 1) that has [wordID] of 1069 for beautiful.

Table 1. Lexicon (COCA)

wordID freq word lemma PoS

1069 110525 beautiful beautiful jj

2406 38508 beauty beauty nn1

10240 7991 beautifully beautifully rr

32250 1332 beauties beauty nn2

81934 283 beautification beautification nn1

113149 192 beautify beautify vvi

94405 189 beautician beautician nn1

When we do a search like beautiful NOUN, it looks up

beautiful in the lexicon, finds the matching value 1069,

and then searches for 1069 in the corpus.

If we have a small corpus like the British National

Corpus (BNC) (just 100-200 million words, depending

on the version), this doesn’t really matter – the corpus

is so small that any architecture should work fine. But

for modern corpora with billions of words of data, we

need to use a more powerful approach like this.

2. (Clustered) indexes

This is perhaps the most important aspect of our

approach. Suppose we want to search for the most

frequent strings of beautiful NOUN (beautiful idea,

beautiful scenery, etc). In COCA (one billion words),

beautiful occurs 120,698 times (upper and lower case),

and in iWeb (14 billion words) it occurs 2,061,276

times.

It would be far too expensive to start at word #1 in the

corpus and see if it is the word beautiful (or actually the

number 1069, as is explained above) and then see if the

following word is a noun, and then follow this process

for the next billion or so words.

At the most basic level, we would want to have an index

of all of the places that beautiful (=1069) occurs in the

corpus, and then just go to those locations and check

to see if the following word is a noun.

But it’s actually more difficult than this. In a corpus like

iWeb, we would have to read from the drive hundreds

https://www.english-corpora.org/size.asp
https://www.english-corpora.org/speed.asp
https://www.english-corpora.org/speed.asp
https://www.english-corpora.org/help/search-types.asp
https://cqpweb.lancs.ac.uk/

of thousands or millions of times, to check all of the

2,061,276 locations where beautiful occurs. This will be

slow, even with fast SSD’s (solid state drives).

In our approach, we use clustered indexes. In our

architecture, there is one row in the relational database

for each word, as is shown in Table 2 (there are actually

16,402,027,655 rows for the 14 billion word iWeb

corpus, since it includes rows for punctuation and text

delimiters as well).

And this is where clustered indexes become very

important. All of the 2,061,276 rows of beautiful (in

iWeb) are physically stored on the drive in one single

“cluster” – physically adjacent to each other on the

drive (as in Table 2). This means, of course, that the

corpus is no longer stored as “sequential words” – the

beautiful scenery inspired her to write poetry –

although that “text” can be reconstructed from the [ID]

field in each row (which refers to “word offset” – 1 to n

in a corpus with n words).

So now when we look for beautiful NOUN in iWeb, we

read from the drive once (and grab all 2,061,276 rows

for beautiful at one time) – rather than reading from

the drive hundreds of thousands or millions of times to

find the 2,061,276 tokens where beautiful occurs.

As far as we know, ours is the only approach that uses

clustered indexes, and it shows. This is why our

approach is so much faster than any others.

3. Context in columns

If each word in the corpus is represented by one row in

the database, and if there is no longer any sequential

ordering of the rows (following the sequential words in

the text), then how do we find sequences of words,

such as beautiful NOUN?

One way would be to use a massive “self join” in the

database. In this case, we would find all of the [ID]

values where beautiful occurs (for example,

(sequential) word #536497452, 535970915, etc, as in

Table 2). We would then check to see if the following

word (# 536497453, 535970916, etc) is a noun.

But this operation is extremely “expensive” for a corpus

with billions of rows of data, since we are in essence

loading the entire corpus “twice” (hence the term “self

join”), and then seeing how the [ID] match up. And for

a five word string (e.g. beautiful NOUN in the NOUN),

we would be loading the database five times. That

might work fine for a small 100-200 million word corpus

like the BNC, but it would be prohibitive for a 10-15

billion word corpus.

Our approach is to store “context” right in the database

row. For example, the following are a few sample rows

in the database for the word beautiful (again, beautiful

being replaced by 1069). Each row also shows the [ID]

(sequential word in the text) and [textID] (a unique

number for each text in the corpus).

Table 2. Basic corpus architecture

ID textID w6 w7 w8 w9 w10 w11 w12 w12 w13 w14 w15 w16

536497452 298 1668 4 361 12 6 1069 229 229 2 11 86 192

535970915 2298 33 150 8 25 6 1069 311 311 688 9 135 6505

536178344 2597 4486 4096161 41 59 67 1069 7209 7209 1 41 44 97

535099670 3299 2 58 15 33 6 1069 259 259 2 4558474 40 54

535099678 3299 4558474 40 54 12 6 1069 259 259 2 11 44 9664

535395358 3399 4054 75 8 6457 6 1069 1 1 311 1 10646 306

536181787 3897 106 4462 8 25 122 1069 1 1 4 37 84 23687

536351108 5095 40 340 1 15 33 1069 2 2 4244256 40 107 1009

536533504 6092 30 187 17 44 1037 1069 1 1 12312 1977 2 92

In each row, columns before and after the beautiful

column ([w11] or “word11”) provide several words of

context to the left and to the right. To save space in this

document, we only show columns [w6]-[w10] (to the

left) and [w12]-[w16] (to the right). But for most

corpora, this would actually go from [w1] (ten words to

the left of beautiful) to [w21] (ten words to the right).

https://www.english-corpora.org/speed.asp

So now when we do a search like beautiful NOUN in

COCA, it finds the 120,698 rows where beautiful occurs

(with one single read of the drive, as explained above),

and then (in RAM, which is very fast) we look to see

which [w12] match up with something labeled as a

NOUN in the lexicon.1 That is why a search like this in

COCA takes just about 1 second (with another second

or so of “overhead” to log the query, check information

regarding the IP address, check the number of queries

done by the user, etc). And in iWeb (which is 14 times

as big as COCA), it only takes about 3 seconds to search

through the 14+ billion rows of data.

To search for collocates within a given span, we would

simply do a UNION ALL statement in the SQL command,

and count the frequency of the words in the relevant

columns (e.g. [w8]-[w10] and [w12]-[w14] (for

collocates in the window 3 words left to 3 words right).2

The downside of this approach is that we end up using

about 21 times as much disk space, because there is so

much “redundant” context for each word. For example,

there are 21 different rows for the word beautiful

(wordID = 1069) in this one case in text [3299], as the

word is in the central [w11] position, as well as the

other 20 positions (10 words left to 10 words right; only

5 left, 5 right shown here).

But drive space is relatively inexpensive nowadays, and

so the extra storage space should not be much of an

issue. And the upside is that searches are tens or

hundreds of times as fast as with other approaches.

This really does matter with a site like English-

Corpora.org, which is the most heavily-used corpus

website in the world.

Table 3. [corpus] sorted by ID (sequential words)

ID textID w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16

535099666 3299 2 54 33 1697 2 58 15 33 6 1069 259

535099667 3299 54 33 1697 2 58 15 33 6 1069 259 2

535099668 3299 33 1697 2 58 15 33 6 1069 259 2 4558474

535099669 3299 1697 2 58 15 33 6 1069 259 2 4558474 40

535099670 3299 2 58 15 33 6 1069 259 2 4558474 40 54

535099671 3299 58 15 33 6 1069 259 2 4558474 40 54 12

535099672 3299 15 33 6 1069 259 2 4558474 40 54 12 6

535099673 3299 33 6 1069 259 2 4558474 40 54 12 6 1069

535099674 3299 6 1069 259 2 4558474 40 54 12 6 1069 259

4. Scalability, flexibility, and extensibility

As mentioned, English-Corpora.org relies on relational

databases. One of the main advantages of this

approach (other than speed), is how “extensible” the

1 The SQL command (which is generated by the web interface) would be:

select top 100 count(*) as freq,d1.word, d2.word from lexicon as d1, lexicon as d2, corpus as x where d1.word
= 'beautiful' and d1.wordID = x.w11 and d2.wordID = x.w12 and d2.pos like 'nn%'
group by d1.word,d2.word order by count(*) desc
2 The SQL command (which is generated by the web interface) to find the top 100 NOUN collocates of plants between 3 words left and 3 words
right would be:
select top 100 count(*),b.w1 from (
SELECT x.w8 FROM corpus as x, lexicon as x1 where x1.word like 'plants' and x.w11 = x1..wordID
UNION ALL SELECT x.w9 FROM corpus as x, lexicon as x1 where x1.word like 'plants' and x.w11 = x1..wordID
UNION ALL SELECT x.w10 FROM corpus as x, lexicon as x1 where x1.word like 'plants' and x.w11 = x1..wordID
UNION ALL SELECT x.w12 FROM corpus as x, lexicon as x1 where x1.word like 'plants' and x.w11 = x1..wordID
UNION ALL SELECT x.w13 FROM corpus as x, lexicon as x1 where x1.word like 'plants' and x.w11 = x1..wordID
UNION ALL SELECT x.w14 FROM corpus as x, lexicon as x1 where x1.word like 'plants' and x.w11 = x1..wordID)
a, lexicon as b where b.pos like 'nn%' and a.w8 = b.wordID group by b.w1 order by count(*) desc

searches can be. As is shown in Table 1, the basic

[lexicon] table contains information for word form,

lemma, part of speech, and more. By matching up the

[wordID] column with the columns [w11], [w10], etc in

https://www.english-corpora.org/coca/?c=coca&q=106204953
https://www.english-corpora.org/coca/?c=coca&q=106204953
https://www.english-corpora.org/iweb/?c=iweb&q=106204991
https://www.english-corpora.org/users.asp
https://www.english-corpora.org/users.asp

the [corpus] table (see Table 2 above), we can search

the corpus by word, lemma, or part of speech.

But because this is a relational database, we can add

additional information, and there is little if any

decrease in performance. For example, we could have

a [synonyms] or [userDefinedWords] table that is

linked to the [lexicon] table, to allow searches like:

=CLEAN_v * NOUN: cleaned the house, wiping her

hands, mops the floor, scrubbing the floor

@COLORS @CLOTHES: black tie, white blouse, red

shoes, yellow hat

Likewise, we can have a [sources] table with essentially

any metadata, and this is then linked to the [textID] in

the [corpus] table (Table 2 above). The following are a

few columns from the COCA [sources] table.3

Table 4. [Sources] table (COCA)

textID year genre Source (abbreviated) title

221235 1993 SPOK ABC_20/20 Believe It Or Else; The Heart Attack Test

1001235 1995 FIC SatEvenPost Old-fashioned Thanksgiving

2001234 1992 MAG FieldStream Spirits in the Sky

3001235 1992 NEWS NYTimes Judge and Heiress: The Rise and Fall of a Private Affair

4016912 1997 ACAD BioCycle Investing in organics diversion at state prisons.

5041236 2012 WEB wikihow.com How to Know if a Girl Likes You: 12 steps (with pictures)

5131236 2012 BLOG blogs.adobe.com John Nack on Adobe : Animation: A building's windows as pixels

5211234 2004 MOV Highwaymen Highwaymen

5231234 2012 TV How I Met Your Mother Trilogy Time

In addition, users can quickly (2-3 seconds) and easily (just

a few clicks) create a “Virtual Corpus” composed of texts

selected by source, author, date, genre, sub-genres, or

many other types of metadata (even information from

IMDB for the TV and Movies corpora). Users can also

create a Virtual Corpus in 2-3 seconds, based on words or

phrases in the texts (such as DNA, basketball, nuclear

energy, or Harry Potter).

The corpus stores all of the [textID] for their Virtual

Corpus, and then the SQL JOIN statement between their

personalized list and the main [sources] table is what

allows them to limit their search to a particular set of texts,

or to extract keywords from their Virtual Corpora (in just

1-2 seconds).

3 The SQL statement (which is generated by the web interface) to find the top 100 adjectives before the word refugees in the 15 billion word NOW

corpus, in texts from GB (the UK) where Guardian is in the source and the texts are from June-Dec 2015, would be the following (and it takes about
2 seconds to run):
select top 100 count(*),d1.word,d2.word from sources as s, lexicon as d1, lexicon as d2, corpus as x where
d2.word = 'refugees' and d2.wordID = x.w11 and d1.wordID = x.w10 and d1.pos like 'j%' and x.textID = s.textID
and s.country = 'GB' and s.source like '%Guardian%' and s.date between '15-06-01' and '15-12-31' group by
d1.word,d2.word order by count(*) desc

Conclusion

The architecture for the corpora at English-Corpora.org is

based on relational databases, and this approach uses 1)

integer values for words 2) clustered indexes and 3) in-row

context.

With this architecture, users can perform powerful

searches involving word, lemma, part of speech,

synonyms, user-defined wordlists, as well as a wide range

of metadata for the texts (including the ability to quickly

and easily create Virtual Corpora).

These searches can be done on even very large corpora

(with billions of words of data) much more quickly than

with any other corpus architecture, including Sketch

Engine. And all of this allows researchers, teachers, and

students to gain insight into language in ways that are not

possible with any other corpora.

https://www.english-corpora.org/coca/?c=coca&q=106206064
https://www.english-corpora.org/coca/?c=coca&q=106206108
https://www.english-corpora.org/help/virtual-corpora.pdf

